Separability-entanglement classifier via machine learning
نویسندگان
چکیده
منابع مشابه
ECE544NA Final Project: Robust Machine Learning Hardware via Classifier Ensemble
In this paper, we propose to use classifier ensemble (CE) as a method to enhance the robustness of machine learning (ML) kernels in presence of hardware error. Different ensemble methods (Bagging and Adaboost) are explored with decision tree (C4.5) and artificial neural network (ANN) as base classifiers. Simulation results show that ANN is inherently tolerant to hardware errors with up to 10% h...
متن کاملDiscerning Machine Learning Degradation via Ensemble Classifier Mutual Agreement Analysis
Machine learning classifiers are a crucial component of modern malware and intrusion detection systems. However, past studies have shown that classifier-based detection systems are susceptible to evasion attacks in practice. Improving the evasion resistance of learning based systems is an open problem. In this paper, we analyze the effects of mimicry attacks on real-world classifiers. To counte...
متن کاملQuantum Separability and Entanglement Detection via Entanglement-Witness Search and Global Optimization
We focus on determining the separability of an unknown bipartite quantum state ρ by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is n...
متن کاملEnsemble Methods – Classifier Combination in Machine Learning
The last ten years have seen a research explosion in machine learning. The rapid growing is largely driven by the following two forces. First, separate research communities in symbolic machine learning, computational learning theory, neural network, statistics and pattern recognition have discovered one another and begun to work together. Second, machine learning technologies are being applied ...
متن کاملOn the kernel Extreme Learning Machine classifier
In this paper, we discuss the connection of the kernel versions of the ELM classifier with infinite Single-hidden Layer Feedforward Neural networks and show that the original ELM kernel definition can be adopted for the calculation of the ELM kernel matrix for two of the most common activation functions, i.e., the RBF and the sigmoid functions. In addition, we show that a low-rank decomposition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2018
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.98.012315